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I, INTRODUCTION AND PRELIMINARIES

Let X be a Banach space, and let M be a nonempty proper subset of X.
Then an element mE M is called a best approximation in M to an clement
XEX if

Ilx-mll ~ Ilx- yll ( 1.1 )

for all y in M, If the set of all such eiements m is nonempty then it is
denoted by ~w(x), The mapping /J!M: x ~ ;~H(X) of X into 2M is called a
metric projection, Denote the domain of /j!~f hy 1)(.~w). Clearly, we have
1)(&'M)::::J M, Following [17J, an element mE M is said to be a strongly uni­
que best approximation in M to an element x E X if there exist a constant
c = c(x) > 0 and an increasing continuous function <p: [0, x) = [P; I ~ [P; I •

<p(0) = 0, such that the inequality

<p( Ilx - mil) ~ <p( Ilx - yll) - ccp( 11m - yll) ( 1.2)

holds for all y in M. Clearly, the strongly unique best approximation In is
the unique best approximation in M to the element x, i,e" '~H(X) = {m}.

It is now well known that the theory of best approximation can not be
rich one without any additional assumptions about the set M, Therefore.
several restrictions have been imposed on M in papers on nonlinear
approximation theory. It seems that the most fruitful one is the concept of
sun introduced by Efimov and Steckin [7]. We recall that M is said to be a
sun if

mE&'W(x) implies mE;J'M(m+ct(x-m)) forevery ct>O.
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One can easily show that M is a sun if and only if this implication is true
only for (X = 2. Thus by (1.1), a set M is a sun if and only if the inequalities

Ilx-mll ~ Ilx-(m+ y)/211; yEM, (1.3 )

hold for each x E :D(:~I1) and m E ~11(X). Clearly, by (1.3) it follows that
every convex set is a sun. Note that if X is a strictly convex space, then
every sun is a Chebyshev set, i.e., the set :3'M(X) is one-element for each
XE:D(~I1)' Indeed, suppose that XE:D(.3'M)\M, mlE~I1(x) and m,-I:m.
Then setting y = m, into (1.3) and using the triangle inequality for the
norm on the right-side of (1.3), we get

This means that the points m, m, -I: m and (m + m d/2 belong to the
sphere {z E X: Ilx - zll = Ilx - mil }, which is impossible in a strictly convex
space X.

In this paper we continue the study of strongly unique best
approximations initiated in the paper [17]. More precisely, in Section 2 we
show that a best approximation by elements of a sun in a uniformly convex
Banach space is strongly unique locally. The global analogies of this result
are presented in Section 3 and 4. In these sections there are proposed two
different methods of proving (global) strong uniqueness of best
approximations. In particular, we apply them to derive strong uniqueness
theorems for the Lebesgue, Hardy, and Sobolev spaces. These methods are
also applied to prove strong uniq ueness of best approximations in some
other Banach spaces. Finally, in Section 5 we show that a metric projection
satisfies a Lipschitz condition of order (X < 1 in the most uniformly convex
function spaces occurring in approximation theory.

2. LOCAL STRONG UNIQUENESS

Throughout this section we assume that X is a uniformly convex space
with dim(X)? 2. Then it is well known that the modulus of convexity
()x: [0,2] ---> [0,1] of X defined by

()x(e)=inf{I-llx+ YII/2:x, YEX, Ilxll = tvll = 1, Ilx- yll =e} (2.1)

is an increasing continuous function. Moreover, we have 15 xf0) = 0,
15,,(2) = 1 and

II(x + y)/211 ~ r[ 1-15 x( Ilx - yll/r)]; r>O, (2.2)
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for all x, y E X such that Ilxll :::; I! yll :::; r. Following Figiel [9], we denote by
bx the maximal convex function majorated by <5 x. Clearly, the function bx

is continuous on the open interval (0,2) (see, e.g., [3, p. 26]) and

(5\(2) = lim J\(I:).
- ... --:

By [13, Proposition 1.e.6 and Lemma l.e.7] the function 61' satisfies the
estimates

dr5( E/2) :::; J\( I:) :::; ()\( 1:); 0<1:<2, (2.3 )

where d is a positive constant independent of E. Hence it follows that
6\(0) = °and that b\ is an increasing convex continuous function on
[0. 2].

THEOREM 2.1. LeI 111 E M he a hesl approximalion in a sun Me X to an
element x E 1)(.1\[). Then Ihere exist a constant c = c(x, r) > °and a con­
tinuously differentiahle increasing con1'C,( fimclion <p = (P,o: [0, 2r] -> IR +,

<p(o) = 0, such that the inequality

<p( Ilx - mil):::; <p( Ilx - .1'1 1
) -- c<p( 11m - vii)

holds f(H alll" in the hall

(2.4 )

(2.5 )

0< I:::; 2r.

where r? dist(x, M) = Ilx - m II is an arhitrary fixed real numher.

Proof: If x EM, then m = x. Consequently. inequality (2.4) is true for a
function <p and a constant c:::; I. Therefore, we may suppose that
x E 1){,y:>\[ )\M. Define the function <p: [0, 2r] -> IR + by <p(o) = °and

,./ g(s)
(p(t) = (Pr(l) := I - ds,

"0 .I'

where g(s)=()\.(s/r). Since 6\ (s/r), 0:::; .1':::; 2r, is an increasing convex
function, we have

for 0:::;.1'0<.1'1 <s2:::;2r (cf. [12, p. 125]). If we put ,1'0=0 and use the
Nordlander inequality [13, p. 63] for the modulus of convexity of X, then
we obtain

0< g(sl )/.1'1 < g(.12)/S2:::; ()\(,1 2/r)/s2

:::; [I - (I - (.1 2/r )2/4 ) I 2] /.12 :::; (.I' 2/ r )2/( 4.1' 2)
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for 0<.1'\ <s2~2r. Thus the function g(s)/s, 0<s~2r, is an increasing
continuous function and g(s)/s->O as .1'->0+. Hence rp is a continuously
differentiable increasing convex function on [0,21']. Moreover, by the
definition of rp we have

rl g(exs) 'I g(s)
(p(yt) = ex I -- ds ~y I - dol' = exrp(t)

.() exs .() 01'

for every ex E (0, I], and

'I g(t) ..,.,
(p(l)~ I --ds=()\(l/r).

.() f

(2.6)

(2.7)

Now, if mE M is a best approximation In a sun to an element
,E!'>(';PH)\\AI and yEBH(" 1'), then

0< 11,-11/ ~ II,-rll ~r.

Hence using (1.3), (2.2 )(2.3) and (2.6) (2.7) we derive

rp( il,- mil) ~ rp( 11((, - m) + (, - r))/211)

~rp(li,-rll[I-()\(llm- ,- )])

~ [1-6,(llm- .I' Ilx- .I'll)] rp(l!x- .I'll)

~ (p( II, - .I'll) - rp( Ilx - mil) 6\( 11m - .1'11/1')

~ (p( il\ - )"11) - (p( Ilx - ml!) rp( 11m - )"11)

= (p( Ilx - )"11) - crp( ,111/- )"11),

where

c = (p( dist( x, AI)) > O. (2.8)

This completes the proof. I
Let us remark that a best approximation in a set Me X to an element

, E !'>(21'\.1) is a best approximation in a ball BI.A x, 1') to the element x for
each r;? dist(x, M). Thus Theorem 2.1 says that a best approximation in a
sun of a uniformly convex space X to an clement x E 1)(;~u) is a strongly
unique best approximation in a ball B\.1(x, 1'), r;? dist(x, M), to the element
,. It should be noticed that in the particular case, when M is a closed con­
vex subset of a uniformly convex Banach space X, we have !'>(9u ) = X (see
[3, p. 22]). We would like to emphasize that inequality (2.4) implies
directly that ;~\Ax) is an one-element set for each x E !'>(2Pu ). Indeed, if
m,m\E.;P",/(X) then setting y=m\ into (2.4) we obtain crp(llm-mlll)~O,
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which IS possible only when m = mi' In the following we denote by
B(M, R) the ball centered at M of radius R > 0, i.e.,

B(M, R) = {x E X: dist(x, M) ':( R}.

COROLLARY 2.1. Let mE M he a hest approximation in a hounded sun
Me X to an element x E "D(&M) n B(M, R), R > 0. Then there exist a
constant c = c(x) > °and a continuously differentiahle increasing function qJ,
qJ(O) = 0, such that

qJ( Ilx - mil) ':( qJ( 11x - yll) - cqJ( 11m - yll)

for all y in M.

Proof Let r = R + diam(M), where

diam(M) = sup{ II YI - hll: Yb hEM}.

Define the function qJ = qJ r as in the proof of Theorem 2.1. Since

0':( fix-mil ~ Ilx- yll ~r:

for all x E "D(&M) n B(M, R) and y EM, we can repeat mutatis mutandis the
proof of Theorem 2.1 in order to prove the corollary. I

3. GLOBAL STRONG UNIQUENESS

In this section we improve Theorem 2.1 for some class of uniformly
convex spaces X. For this purpose, we assume throughout the section that
qJ: IR + -> IR + is an increasing convex continuous function such that
qJ(O) = °and qJ( 1) = 1. We shall say that a uniformly convex space X has
modulus of convexity of the type qJ if there is a constant K, 0 < K < x, such
that

(3.1 )

The function qJ is said to be submultiplicative if there IS a constant L,
0< L < x, such that the inequality

qJ(ts) ':( LqJ(t) qJ(s) (3.2)

holds for all positive t and s. It should be noticed that every uniformly
convex space X has modulus of convexity of the type qJ provided that the
increasing convex continuous function qJ is defined by qJ(t) = du(t) with

rtbx(S)
u(t) = J, -- ds,

o s
t>O,
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where d = 1/a( 1) and <>x(.~), s ~ 0, is an increasing extension to IR + of the
maximal convex function <>As), 0 ~ s ~ 2, majorated by bAs), 0 ~ s ~ 2. In
this case we have K = I/d = a( I).

THEOREM 3.1. Let M be a sun in a uniformly convex space X having
modulus oj' convexity bx oj'the type qJ. Assume that qJ is a submultiplicative
function and that mE M is a best approximation in M to an element
x E TJU~H). Then the inequality

qJ( Ilx ~ mil) ~ qJ( Ilx - .I'll) ~ KL I qJ(11m - .I'll) (3.3)

holds f(Jr all .I' in M, where K and L are as in (3.1 )-(3.2).

Prool Since qJ( 1) = 1, it follows from (3.1 )-( 3.2) that K ~ 1 and L ~ 1.
Therefore, without loss of generality, we may suppose that x # m, i.e.,

0< Ilx-mll ~ Ilx- .I'll, I·EM. (3.4 )

Since qJ(O) = 0 and qJ is a convex function, we have

qJ(ts) = qJ(ts + (1 - t) ·0) ~ tqJ(s)

for all 0 ~ t ~ 1 and s E IR ~. This in conjunction with (1.3), (2.2),
(3.1 )-(3.2), (3.4) and the fact that qJ is an increasing function gives

qJ(llx - mil) ~ qJ( 11((x~ m) + (x - y»)/211)

~qJ(llx- .I'll [1-b x(llm- yll/llx- yll)])

~ [1-bAllm- yll/llx- yll)] qJ(llx- .I'll)

~ qJ( Ilx - .I'll) ~ KqJ( 11m - yll/llx - .I'll) qJ( Ilx ~ .I'll)

~ (p(x - .I'll) - KL I qJ (11m - .I'll)

for all .I' E M. This completes the proof. I

Remark 3.1. In a recent paper Prus and Smarzewski [15] established
Theorem 3.1 for the function qJ( t) = t\ q ~ 2, but with the constant
c = KL I replaced by an unknown constant.

The theorem says that the element mE M is a strongly unique best
approximation to the element x E TJ(2PM ) with the constant c = KL -I

independent of x. It can be applied to the most interesting uniformly con­
vex spaces occurring in approximation theory. For example, let
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x = Lp= Lp(S, L, J1), 1< p < oc, be the Banach space of all J1-measurable
extended scalar valued functions (equivalence classes) x on S such that

Ilxll = Ilxll p := U, Ix(s)I/' J1(dS)J'ip < CD

where (S, 2.', J1) denotes a positive measure space. Then we have

COROLLARY 3.1. Let M be a sun in L p, l<p<CXJ. ItmEM is a best
approximation in M to an element x E 'D(.'l'M) then

lix - mll":'( Ilx - YI',"- ('I' 11 m- YII"

for all Y in M, where q = max(2, p) and

(3.5)

{
(p - 1)/8,

('I' = 1/(p2I'j

Prool First, we note that

it I < p :'( 2,

it 2:'( p < CD.
(3.6)

(3.7)

Indeed, if p ~ 2 then this inequality can be easily deduced from the formula
for bL{' given in [10] (cf. also [8, p. 300]). Further, if I < p:'( 2 then
inequality (3.7) can be found in [14]. Now, let us set 1.fJ(t)=t'l, t~O. This
function satisfies all assumptions of Theorem 3.1 with K = ('I' and L = I.
Thus by applying Theorem 3.1 we obtain the desired result. I

The corollary has been proved recently in [18] ([ IS J) for a closed con­
vex subset of L p with 2:'( p < CD (I < p:'( 2, respectively). The constants ('I'

given in [18] ([ IS J) are greater (smaller, respectively) than the constant ('I'
defined by (3.6). The same result can be established for the Banach space
X = HI', I < P <CD, of all functions x analytic in the unit disc Izi < 1 of the
complex plane and such that

Ilxll = Ilxlll':= lim (~j,2rr Ix(reill)11' dO) '/I' < C/~.
r~ I 2n ()

COROLLARY 3.2. Let M be a sun in HI', 1< P < CD. It m E M is a best
approximation in M to an element x E 'D(iY'M) then

for all Y in M, where q = max( 2, p) and ('pis as in (3.6).

Proof Let LI' = LI'(S, 2.', J1), where J1 is the measure of Lebesgue in the
interval S = (0, 2n) such that J1(S) = 1. Denote by I the boundary function
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in L p corresponding to a function f in HI', i.e., let f({)) be the Lp-limit of
f(re ill

) as r--->I- [6, p.21]. The mapping .'F:f--->l of HI' into L p is an
isometric isomorphism [6, p. 35]. Therefore, we have

Finally, one can apply Theorem 3.1 in order to finish the proof. I

Finally, we note that a power function is also admissible in Theorem 3.1
when the Banach space X is p-convex and q-concave [9]. More precisely,
we have

COROLLARY 3.4. Suppose that the Banach space is p-convex and S-C(Jn­

cave, H'here I < p,,;; s < Xi. Let m EO M be a best approximation in a sun
Me X to an element x E X'>(;Y~f)' Then

Ilx - mil 'I,,;; Ilx - yll '1- c 11m - .1'11'1

felr all .I' in M, where q = max(2, s) and

c=q 1(max(2,2/(p-I)12)) 4

Proof By Proposition 24 of Figiel [9] we have

which in view of Theorem 3.1 completes the proof. I
The corollary in conjunction with the Proposition I of Figiel [8] can be

used to prove strong uniqueness in Sobolev spaces. We do not present
details here, because this method is less elementary than the method
proposed in the next section. Furthermore, the constants given in the next
section are much better than the constants which would be given here.

4. ANOTHER ApPROACH TO GLOBAL STRONG UNIQUENESS

In this section we consider a new method of proving global strong
uniqueness of best approximations. The method does not use the notion of
modulus of convexity.

THEOREM 4.1. Suppose that there exist a positIVe constant K and an
increasing continuous function cp: IR + ---> IR +' cp(O) = 0, such that the
inequality

(
II

u + v [I)cp 21 ,,;;Hcp(llull)+cp(ljvll)]-Kcp(llu-vlll (4.1 l
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holds for all u, v in X. Let mE M he a hest approximation in a sun Me X to
an element x E 1)(:J'M)' Then

<p( Ilx - mil) ~ (p( Ilx - y ) - 2K<p( 11m - .I'll)

for all r in M.. .

Prool By (1.3) we have

<p( Ilx - mil) ~ <p( 11((x - m) + (x - y))/211)

for all y in M. Hence by using (4.1 ) we get

<p( Ilx - mil) ~ ~(<p( Ilx - mil) + <p( Ilx - .I'll)) - K<p( 11m - .I'll),

(4.2)

which is equivalent to (4.2). I

The theorem can be easily applied to prove strong uniqueness of best
approximations in L

t
, and HI' spaces.

COROLLARY 4.1. Let M he a sun in the space X, Ifhere X = L
t
, or X = HI'

and I < p <y~. If mE M is a hest approximation in M to an clement
x E 1)(~H) then

(4.3 )

It)r all y in M, where q = max(2, fJ) and

c = {p( p-- I )/4
I' 21 /)

if 1< p ~ 2,

if 2 ~ p < JJ.
(4.4 )

Prool We recall the Clarkson inequality [4, Theorem 2],

Ilu+vlll'+ Ilu--L:F~2t' 1(llull t'+ Ilv1n, (4.5 )

which holds for all u, v ELI" P ~ 2. It is clear that this inequality is
equivalent to inequality (4.1) with <p(t) = tl' and K = 2 t', which in view of
Theorem 4.1 completes the proof in the ease p ~ 2. Further, by the Meir
inequality [14, Inequality (2.3)J we have

for all u, v ELI" I < P ~ 2. Hence we can apply Theorem 4.1 in order to
finish the proof for L I' spaces. Since the space HI' is isometrically
isomorphic with a subspace of the Lebesgue space LI'(O, 2n) (cf. the proof
of Corollary 3.2), we readily conclude that the corollary is also true for HI'
spaces. I
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We remark that the constant cp is now better than the constant given in
Corollaries 3.1 and 3.2. Now we prove an auxiliary lemma which will be
needed below.

LEMMA 4.1. The inequality

(t"+SI')C;S)2 "~t2+S2. I ~p~2. (4.6)

holds f{Jr all nonnegative numbers t and s.

Proof: Inequality (4.6) is obvious when t = .1', S = 0, or t = O. Therefore,
without loss of generality, we may suppose that 0 < t < s. Dividing both
sides of inequality (4.6) by .1'2, we get the equivalent inequality

(
-+ 1)2 "

f(p):=z2+1~(z"+I) T ~O, 1~p~2,

where z = tis is an arbitrary fixed number in the interval (0, 1). We note
that

Since

(-+1)"h(p):= T 2 Z + 1
f'(p) = (z" + 1) In2~z" In z.

and h( I ) ~ 0, it follows that 1'( p) ~ 0 for 1 ~ p ~ 2. This in conjunction
with the fact that f(2) = 0 implies that f( p) ~ 0 for 1~ p ~ 2, which finishes
the proof. I

Now, let Q be an open subset of R". Denote by H'I' = H""(Q); k ~ 0
and 1 < P < oc, the Sobolev space [1, p. 149J of distributions x such that
D'xEL,,(Q) for allliXl =iX l + 00' +iXlI~k. We recall that the norm in H k

.1'

is defined by

COROLLARY 4.2. Let M be a sun in H"I', »'here k ~ 0 and 1 < P < oc. If
mE M is a best approximation in M to an element x E 1)(~\.1) then

(4.7)

for all yin M, where q=max(2, p) and c" is as in (3.6).
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Proof First we consider the case p ~ 2. Since D'x E L,,(Q) for every
x E H k

.", we can use inequality (4.5) to get

(4.8)

for all u, [1 in Hk
.", where a is a multiindex such that lal ~ k and II . III'

denotes the norm in L,,(Q). If we sum up inequalities (4.8) over lal ~k,
then we get

I

u + vi" I 11211 ~ 2 (II uII" + II uIII') - 2('" II u - [,II"

for all u, r in H k
.". Hence by applying Theorem 4.1 we obtain inequality

(4.7). Now suppose that 1 <p<2. Then by Theorem 1 of Meir [14], we
derive

ID'(u + r )1" 1 I . .,
I 2 II" ~2 (1ID'ull ~ + IID'vll~) -2 ('" IID'(u - 1')11;

x ID'U I ; ID'1'1 11:' :' (4.9)

for all lal ~ k and u, v in H k
." such that ID'ul + ID'vl is not equal to the

null e of L,,(Q). We need the Radon inequality [11, Theorem 51],

t, ~ 0, Sy > O.

Summing inequalities (4.9) over a's such that lal ~ k and ID'ul + ID'vl oF e,
and using the Radon inequality, we obtain

Hence by Minkowski's inequality we get

This in conjunction with Lemma 4.1 implies that
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!I u;vr ~ I! u;vr CUll; IlvIIY I'

~~(IIUIII'+ IIVIIP)Cull; IlvllY-p

I 2 I ) ) I )-"2 CI' Ilu - vii ~"2 (1Iull~ + Ilvll~) -"2 ()Iu - vll-

213

for all u, v in Hk,p. Hence by Theorem 4.1 the proof is completed. I

The proof of Corollary 4.2 can be easily extended to the spaces (,(LI')
[13, p.46]. For this purpose, let (Q"E"Il,), :lEA, be a sequence of
positive measure spaces, where the index set A is finite or countable. Given
a sequence of linear subspaces X, in Lp(Q"E"11,), we denote by L,!,I';
I < p < oc and q = max(2, p), the linear space of all sequences

x = {x, EX, : :l E A } E l'l( A )

equipped with the norm

( )

1'1

Ilxll = Ilxllp,q:= I Ilx,II;", ,
y. EO /1

where II· III',' denotes the norm in LI'(Q" L" 11,).

COROLLARY 4.3. Suppose that m is a hest approximation in a sun

Me L'I'I'; I < P < oc and q = max(2, p), to an element x E 'D(,2Pw ). Then

!c)r all y in M, where cp is as in (3.6).

Prool Replace the symbols D'u, D'v, LI'(Q), Hkl' and II . III' occurring
in the proof of Corollary 4.2 by u, E X" V, EX" Lp(Q" E" {I,), L'lp and
II . III'," respectively. Next, repeat mutatis mutandis this proof. I

Finally, let L p=Lp(SI,E 1,1l1) and L'I=L'I(S2,E2,1l2), where
I < p < oc, q = max(2, p) and (S;, E

"
11,) are positive measure spaces.

Denote by L'I(Lp) the Banach space [5, III.2.10] of all measurable
LI'-valued functions f on S2 such that

Then we have
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COROLLARY 4.4. Let mE M he a hest approximation in a sun
Me Lq(Lp ) to an element x E '.D(:;P,j1). Then

-mll'l~ Ilx- YII'I-(pilm- yli'l

for all y in M, where if = max (2, p) and (I' is as in (3.6).

Proof Let u and v be two elements of Lq(Lp ). Then u(t) and v(t)
belong to Lp for each tES2 . By Theorem 4.1, it is sufficient to prove that

u+ vli'l I I
-)-1 ~7 (1Iull'l + 111:11'1) """"::;- ("llu-l·II'I.

.....:1 ..... -

There is no loss of generality in assuming that

.::(s) = 1( lu(.I)1 + Ir(s)l)

(4.10)

does not vanish (otherwise, we integrate only over :s E S 2: .::(s) > 0 :). If
l<p~2, then we put u(s) and v(s) into thc Meir inequality [14,
Theorem 1].

U(S)+1'(S)III' I 1 "
2 ,,~2(llu(s)II;:+ IIV(s)II;:)~2(1' u(s)-v(s)II;.II.::(.I)II;: -.

Integration of both sides and application of Holder's inequality yields

1

"lu+1'11" ~~(llull"+ IIVII")-~(,,j' (1Iu(s)-v(slll;:
2. 2 2"

x 11.::(s)11 ~I" 21 i2)2ip f.12\ds) ~~ (Ilull p + Ilvll")

-~ (" (L, Ilu(,I) - 1'(slll;: 112(dl)rf! (t. 11'::(1)11;: f.12(dS)Y 2/,

~~(IIUII"+111;11")-~(I,IIU-l "Cull~llvllr ". (4.11)

Hence by applying Lemma 4.1, we obtain inequality (4.10). Finally, if p ~ 2
then inequality (4.10) follows directly from the Clarkson inequality
(4.5). I

We remark that inequalities (4.10), (4.11) can be used to prove the
estimates for moduli of convexity of Lq(L,,) spaces,

(4.12)
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where q = max(2, p) and

215

d = {( p - 1)/8,
" 2 "Ip,

if 1 < p ~ 2,

if p~2.

Indeed, applying inequalities (4.10 H 4.11), we get

I II u + e" ( II u + [' II)- c F;'! <: I - --' <: p 1-. --'
2 " "I 2" I 2

for all u, v In L'!(L,,) such that Iluli = Ilvii = I and Ilu - ell = D. Hence we
immediately obtain (4.12). Clearly, the san;e estimates can be similarly
proved for moduli of convexity of spaces Hk

.!' and L,!.". One can notice
that if L,! = I~ then the estimate (4.12) for the ;nodulus of convexity of
L'I(L,,) = L", 1 < p ~ 2, coincides with the estimate given recently by Meir
[14, Corollary 1]. It should be also noticed that a super-reflexive space X
can be renormed in such a way that Theorem 4.1 can be applied with
(p( t) = {'I for some q ~ 2. This follows directly from Theorems 18.2 and 18.7
presented in [16 J (cf. also [19, Section 111.2 J).

5. SOME ApPLlCA nONS OF STRONG UNIQUENESS

Recently, we have proved in [17J that the metric projection 21M is locally
Lipschitzian of order lip for a linear subspace M of L p , 2 ~ p < ex).

Moreover, 21M is also Lipschitzian of order 21p which was proved by
Bjornestal in [2]. We are indebted to the referee for this reference. Now we
can extend our result as follows.

THEOREM 5.1. Let M be a sun in X such that 0 E M. Suppose that there
exist a positive constant c ~ I and q ~ 2 such that the inequality

i1x-mll'!~ Ilx- yil'l-clim- .I'll'!

holds j(Jr any x E 1) (;~"'), m E [JJ", (x) and y E M. Then we have

fiJI' all X I ,X2 in a ball B(r)= {XE1)(.'Y'",): Ilxll ~r}, where

d=(q/(y'!(I+c '1)1 1!'1~2+c 'I.

(5.1 )

(5.2)

i= I, 2.
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Moreover, putting y = 0 into (5.1) wc conclude that

m,ll :( c 'I !lx,11 :( c 'II': 1= 1,2.

Hence by applying twice inequality (5.1 ) and using the inequality

we obtain

11'1 - .\'/1 :( (/1"1 I II -II: 0:( I, 1:( 1',

c11m l -m 2 1\'1

:(:Wlx l -m2 '1-llx 2-m 2 I/)+~(lY2 1II1'1-!I'YI-lIIlli'1l

:(~q(r+rc 'I)'! 1(1 1-/II211-llx2 -111 2111 + Illx2-/II111- ,lxI-/II I I)

:(q(r+rc '/)'1 Illx l - x2'

This completes the proof of (5.2). Finally, the estimate for 11 follows from
the well-known inequality betwecn weighted arithmetic and geometric
means [II, Inequality 2.5.2]. I

In particular, it follows from results presented in the proceeding two
sections that assumptions of Theorem 5.1 are satisfied when M, 0 E At, is a
sun in spaces LI" HI', Hk.I', L'II" and L'/(LI,), where 1< fJ < 'f, and
q = max( 2, fJ). Additionally, by Corollary 3.!, this is also true when the
space X is fJ-convex and I-concave. I < fJ:( I <x.. In this case,
q = max(2, I).

Strong uniqueness can be also applied to establish the rate of con­
vergence of numerical algorithms for computing best approximations. For
this purpose, let III be a best approximation in a sun j'IJ c X to an element
x E !\(:JlH ). Then

i. := Ilx - mll'l = inf{ 11\ - 1'11'/: I' EM:.

Suppose that (m,: eM is a minimizing sequence for the functional
f( y) = Ilx --.\' II, rEM, produced by a numerical algorithm, i.e., that

as I -> x.

Then we have

THEOREM 5.2. Under the alsumptlons 01 7fleorelll 5.1, Ihe minimizing
sequence {m,: converges to m with the rail'

Proof: Replace y by m, in inequality (5.1). I
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Finally, we note that Theorems 5.1 and 5.2 can be extended to the case
when

cp( Ilx - mil) ~ cp( Ilx- yil) - ccp( 11m - yll)

for all y in M, where cp is an increasing convex continuous function on IR + .
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